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In order to better understand the geometry of the polymer collapse transition,
we study the distribution of geometric clusters made up of the nearest neighbor
interactions of an interacting self-avoiding walk. We argue for this new
correlated percolation problem that in two dimensions, and possibly also in
three dimensions, a percolation transition takes place at a temperature lower
than the collapse transition. Hence this novel transition should be governed by
exponents unrelated to the 0-point exponents. This also implies that there is a
temperature range in which the polymer has collapsed, but has no long-range
cluster structure. We use Monte Carlo to study the distribution of clusters on
the simple cubic and Manhattan lattices. On the Manhattan lattice, where the
data are most convincing, we find that the percolation transition occurs at
w,=1461(3), while the collapse transition is known to occur exactly at
we=1.414.... We propose a finite-size scaling form for the cluster distribution
and estimate several of the critical exponents. Regardless of the value of w,, this
percolation problem sheds new light on polymer collapse.
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1. INTRODUCTION

The collapse transition of long chain polymers in dilute solution is one of
the most studied phase transitions in statistical mechanics.’">* This transi-
tion is characterised by the sharp change in large-molecular-weight scaling
properties of a single polymer on lowering the temperature. At fixed, high
temperatures the large molecular weight limit of polymers in dilute solution
has been understood to be a critical phenomenon in its own right:®
there is a correspondence to the O(n) spin model in the limit » — 0. This
phenomenon itself involves the so-called excluded volume problem which
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implies that in low dimensions polymers will take up much more volume
than one would expect from a naive random walk model. The addition of
attractive interactions complicates the situation and allows for a crossover
to a state which is more compact than a random walk and in fact is dense
in space on lowering the temperature (increasing the strength of the attrac-
tion). This collapse transition (which occurs at the f-point) for a single
polymer from an expanded to an internally-dense state has been conjec-
tured to be described by a tricritical O(n) field theory.*>

To facilitate physical understanding of the renormalisation group
approach to the polymer collapse transition de Gennes** introduced the
associated “blob” picture of the approach to the collapse point. In contrast
to this elegant but essentially mathematical picture we are interested in the
question of whether, on lowering the temperature through the collapse
temperature, some sort of percolation transition takes place as a result of
the inevitable clustering of the polymer. It would seem natural to assume
that it does since at very low temperatures the polymer is almost com-
pletely compact and so large multiply-connected clusters should exist, while
at high temperatures the polymer forms a random fractal. One way to view
the collapse process might then be through the clustering of the polymer to
form dense regions. This clustering should admit the possibility of a per-
colation phenomenon. In this paper we study this question of percolation
associated with polymer collapse in some depth by considering the percola-
tion of interactions. We do this because the geometry of the interactions
gives us new information on the structure of the polymer conformation. Of
course, there may be other percolation processes of interest in conjuction
with polymer collapse.

One avenue of study of the collapse transition has been to model the
geometry of a polymer by a self-avoiding walk (SAW) on a regular lattice,
which incorporates directly the excluded volume, and the interactions
between monomers by nearest-neighbour contact potentials. This model of
a polymer in solution shall form the basis of our studies here. To define a
percolation problem one must define at least two things: First, one must
define what it is that might be percolating and second one must specify the
connectedness rule.

The self-avoiding walk model in conjuction with the motivation stated
above, leads us to focus on the nearest-neighbour interactions of the inter-
acting self-avoiding walk model (ISAW) and the monomers (sites) to
which they are connected. Specifically, it is the clustering and percolation
properties of the nearest-neighbour interactions themselves that we study.
Given that we are focusing on the percolation properties of nearest-
neighbour contacts of ISAWs there is still scope to study a variety of per-
colation models within this context. All these different models are defined
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by the choice of connectedness rule. We have chosen one particular simple
local rule explained below.

We could of course have chosen different models to explore the ques-
tion of the percolation of interactions in polymer collapse. As explained
above we could have chosen a more general interacting SAW model which
includes next nearest-neighbour interactions (or some other such exten-
sion). We may also have chosen a different connectedness rule. {One needs
to be a little careful in deciding on the exact percolation clustering rule
since the walk (polymer) is itself a connected object (if considered by its
monomers alone).) We suspect that given that these changes are local and
short-ranged that any universal properties of the critical phenomena we
discover should be invariant, as these changes do not affect the universality
class in other percolation problems. This remains to be verified by future
studies. There are arguments for and against different rules but the large
computational resources required by the investigation restricted us to
investigating only one rule. We therefore chose what we considered the
simplest non-trivial rule.

For the reasons given above we have examined the case of bond per-
colation where the bonds over which the interactions act become the bonds
of the percolation process.>? Two interaction bonds are considered adjacent
if they have ends that are no more than one step of the walk apart: this
implies they are either directly connected or a step of the walk intervenes.
A cluster is a set of adjacent interaction bonds, see Fig. 1. Our cluster num-
ber statistics, n,, count the (weighted) average number of clusters per step
for the number of bond interactions, s. This simple definition implies that
the average energy U of N-step walks is simply related to the values of n
by

s

Smax

U= —¢ ) sn, (1)

s=1

where —¢ is the energy of a single nearest-neighbour interaction and the
maximum size cluster, $,,,,, is proportional to V.

To briefly summarise our work, we find that a percolation transition
does indeed take place but at a temperature below the f-point in two
dimensions. The same scenario probably holds in three dimensions but our
evidence is less conclusive there. We provide estimates for the associated
exponents at this novel transition—which we label “Polymer-Interaction

2 Please note that we are not considering random-interaction models of interacting polymers:
in each realisation of our polymer all the interactions that exist are counted as they are, and
we do not choose the bonds of the percolation problem directly with an uncorrelated ran-
dom process.
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Fig. 1. An interacting self-avoiding walk on the square lattice with two clusters highlighted

by shading. The walk is the heavy solid line. The interactions are marked as wavy dashed
lines. One cluster is of size 6 and the other is of size 10.

Percolation” (PIP). One may contrast this with the situation of the Ising
model in two dimensions'® where the thermal and percolative transitions
take place at the same temperature. Our results imply that there is a range
of temperatures for which a polymer is in a collapsed state but con-
trastingly the interactions do not percolate. In other words there is a
macroscopic density (with respect to the underlying lattice, see Eq. (4)) of
bonds but no macroscopic structure. We note that the PIP transition is
unrelated to the first-order liquid-solid transition of Zhou ef al.'”’ We also
note that by analogy to percolation associated with Ising models that the
our PIP should not necessarily give rise to a singularity in any thermo-
dynamic functions, such as the free energy. Therefore, if the PIP transition
does indeed take place away from the f-point we do not expect any
singularity in the free energy, and we have not encountered any evidence
to the contrary.

We have explored the questions raised in the model explained above
by utilising various contemporary Monte Carlo methods. Our most con-
vincing results come from simulations on the Manhattan lattice where the
exact collapse transition temperature {as defined by the change in the expo-
nent v) is known.**®) (We point out that subsequently, the specific heat
was shown to be singular at this point./'?’) Simulations there (using kinetic
growth algorithms, for example see ref. 10) show fairly conclusively that the
expected cluster size is finite (less than 3000 bonds) at the collapse tran-
sition temperature. These simulations are for walks of length 10° and thus
finite size effects are expected to be insignificant."'”’ This result implies that,
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irrespective of the estimate, given below, of W, the clusters do not per-
colate at w = \/5

Using a reptation-based algorithm*!? the PIP transition point has
been estimated to be at w =exp(e/kzT) = 1.461(3), where the estimates are
systematically moving away from the exact collapse point at w = \/5 The
fundamental percolation exponents ¢ and t have been estimated on this
lattice as 0.45(10) and 2.25(15) respectively (c.f. ordinary uncorrelated
percolation where ¢ =0.3956... and 7=2.0549...). As the walks involved in
these estimates are not as long as those involved in the kinetic growth
simulations, finite size corrections may still be significant and hence these
estimates may be biased.

The possibility that the oriented nature of the Manhattan lattice
affects the universality of these exponents and hence the coincidence of the
PIP and 0 points, are issues we do not address in this paper. However, we
point out that the oriented nature of this lattice does not seem to affect the
collapse crossover exponent.t!®

We have also carried out simulations on the cubic lattice. Here the
collapse and percolation points seem to be distinct though close. We have
estimated the exponents at the percolation point on this lattice: the results
are given in Section 4.1.

However, we realize that on both lattices, particularly the simple
cubic, our estimates for the PIP transition points and the associated best
current estimates of the 0 points are close. Taking a pessimistic view of
corrections to scaling and possible metastability of our simulations, might
lead one to believe that the PIP transition in fact takes place at the ¢-point.
If this were indeed the case one might consider it an even more interesting
description of collapse. We believe that the resolution of this question will
take substantial computer resources.

In the next section we develop the scaling theory we believe applies to
collapsing polymers and our PIP. Following that we detail the Monte
Carlo and kinetic walk algorithms that have been used for the simulations.
The results are presented and discussed in Section 4.

2. THE PIP TRANSITION AND CLUSTER SCALING

A SAW is a non-intersecting path of N+ | contiguous occupied sites
of some graph. (In this paper we will be dealing exclusively with regular
lattices.) In the ISAW model each non-consecutive nearest-neighbour pair
of sites on the walk is assigned a Boltzmann weight w, with the partition
function of walks of length N given as

Zyw)= Y a™ow (2)

PnESdy
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where Q, is the set of all N-step SAW and m(¢ ) is the number of interac-
tions in the configuration ¢ ,. The behaviour of this model is characterised
by three regimes. There exists a value of w =w, known as the collapse or
0-point such that the scaling of important quantities is different if w is fixed
below, at or above this value. For w <w, the radius of gyration scales as
R;(N)~ N+, where v, =3/4 in two dimensions and v, ~0.588 in three
dimensions. For w>w, the walk is in a dense collapsed state where
R;(N)~ N' d being the dimension. Close to w, there is a tricritical cross-
over region. Furthermore scaling of R at w, gives behaviour intermediate
between the two regimes with R, ;(N)~ N and l/d<v,<v, .

On the other hand, the clustering behaviour of the percolation
problem we have defined associated with the ISAW model can be under-
stood through the behaviour of the mean number of clusters per monomer
of size s, n(w, N). A plot of n, for the simple cubic lattice at w = 1.405 is
given in Fig. 2. This function enables the determination of the PIP critical
point by the location of the singularities in its thermodynamic limit,
n(w, co)=Ilim,_ , nl{w, N). The mean numbers of clusters per monomer
of size s, n{w, N), or “cluster numbers” are defined as

1
nfw, N) = NZ @) Y (Number of clusters of size s in walk @) "™~

PnERy (3)

where Z y(w) is the partition function of walks of length N as defined above.
Note that by dividing by N the cluster numbers n(w, o0) are non-zero for
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Fig. 2. A plot of the cluster numbers, n,, vs. the cluster size, s for the simple cubic lattice at
w= 1405 > w,. This function does not simply decay with increasing s because this data was
taken from the low-temperature percolated phase where there is a precursor of the infinite
cluster in finite samples.
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all finite w. If one had chosen to divide by the volume of the walk RY, then
nyw, o) would be non-zero only when the density of the walk is non-zero.

We define the PIP transition point as the temperature at which the
higher moments of ny(w, o) diverge: this is one of several equivalent ways
to define any percolation transition, see Stauffer and Aharony.'? It would
be interesting to base a study of this same problem using a suitable defini-
tion of a spanning cluster. We would, of course, expect the conclusions to
be exactly the same.

2.1. Density of Interaction Bonds

To understand where a possible PIP transition point, w,, might occur
we must first consider the interaction bond density p of the ISAW model.
This is because we assume that for percolation to occur one must have an
effective density p greater than some transition value p,.

The box density of interaction bonds, py(w, L) is defined as follows:
For any given ISAW, ¢, place a d-dimensional hypercube (or box), B4,
at the centre of mass of the N-step walk, then

1

m Y, m(@y, Bra) o™® (4)

enelly

pN(wa L) =

where m(@y, B4} is the number of interaction bonds in the box B« for
walk ¢,. Then the density is defined as

plw)= lim lim py(w, L) (5)
L—sow N— o

The expected behaviour of the density of interaction bonds is shown
schematically in Fig. 3. For L << R, the box density of interaction bonds
is generically expected to scale as L' ~¥, since the total number of interac-
tion bonds at fixed w inside a box of size L?, is asymptotically proportional
to L', Since v is believed to be greater than 1/d in the expanded phase we
have that p(w < wy) =0. In the collapsed phase v=1/d and hence the den-
sity can be non-zero. At the critical point the behaviour depends on the
value of v,, if v,> 1/d, then the density is expected to go continuously to
zero as illustrated in Fig. 3. If v,=1/d then the density will be discon-
tinuous.

If we assume that v,> 1/d as numerical evidence has suggested in two
and three dimensions then the PIP transition point obeys w, > w, since one
expects that it is necessary for p. = p(w,) > 0 for a short range percolation



82 Brak ot al.

Fig. 3. A schematic illustration of the expected behaviour of the interaction bond density
plw) as a function of the Boltzmann weight w.

problem. Hence there are two caveats: if either v,=1/d or the correlated
percolation problem we have defined percolates for any concentration (that
is, p.=0) then the scenario we paint below needs modification.

This leads us to expect that w,>w,, with usual percolation-type
scaling forms holding around w, and exponents unrelated to those for the
thermal collapse around w,. We expand on this below.

2.2. Cluster Scaling

Given that the assumptions discussed above are valid we now explain
the crossover and finite-size scaling we expect to occur close to the PIP
transition.

The cluster numbers are expected to have a generic percolation type
critical point, at w,, with associated scaling as well as finite size scaling
(ie., N dependence). Thus, in the limiting region s— oo, N— co and
w— w, we assume that n(w, N) is a generalized homogeneous function
which, in the usual way, leads to the following three equivalent scaling
forms

nfw, N) s s "F(s Awl','/",.S'N’¢’I'/”) (6)
nlw, N) s N~ F(dw, N, sN ") (7)
nfw, N) s Adw?” F(s dw)”, dw,N%) (8)

where 4w, =w—w,. For a definition of the “scales as” symbol, <, see
Brak and Owczarek. '3 14
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In the analysis of our simulations we will use the scaling of the
moments of the cluster numbers to obtain estimates of the critical
exponents. The moments are defined as

Mlw, N)= 3 s*n, (9)

The summation does not include s,,, so as to exclude any infinite cluster
that may exist in the thermodynamic limit. Using (8) and approximating
the sum by an integral gives

M@, N) s 4o ~* = (N 4w}, N% dw),) (10)

If we now make a second major assumption that in the limiting
region, N - o and w — w,, the moment M,(w, N) is a generalized homog-
eneous function, then this assumption is only consistent with (10) if the
two variables z; =N 4w,” and z,=N dw,/% are identical, which is the
case if ¢, =¢. Thus with this assumption we have that

M@, N) s 4o~ Y 1 (N% dw,) (11)

with
. constant X = O 12
il x) ~ X k= 1/, =0 (12)

The asymptotic behaviour of the scaling function #/(x) is determined by
the fact that M,(w, N) is finite as N —» oo for w # w, and that M, (w,, N)
must be independent of w.

From (11) we deduce that

Mw,, Ny~ N**1=9 a5 N, (13)
Furthermore, as the moments have a maximum, it follows from (12) that
the position of this maximum, wy,,, should approach the critical tem-
perature, w,, like

w,—Wpax~N"% s No (14)

Thus, using numerical data in conjunction with (13) and (14), we can
get independent estimates of w,, v and ¢,.
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Analogous to conventional percolation we expect that in the low density
phase, p <p,, that is w <w,, the cluster numbers in the thermodynamic
limit at fixed w should behave like

ndw<w,, N=0o0)~s7 " exp(—s/s¢) as §— o0 (15)

where the “typical” cluster size is expected to behave like se ~ 4w, /%, and
7_ is another exponent, appearing in the low density regime only. For an
infinite length walk there is, of course, no N dependence, and the scaling
behaviour is directly analogous to standard percolation. Hence there will
be a corresponding set of scaling relations between all the percolation type
exponents as there is in standard percolation. We point out that while the
moments of the cluster numbers (and s (w)) are finite at w, and surely
continuous as a function w below w, there should still exist a weak
singularity in the cluster numbers (and more precisely s.(w)) at w,. This
is simply because p(w) is a non-analytic function of w at w,. Note p =0 for
w < w, does not imply that s, =0.

3. THE ALGORITHMS

Three different algorithms were employed in the simulations that we
conducted. Firstly, we needed an algorithm to simulate ISAWs on the
simple cubic and Manhattan lattices for varying w. We chose to use the
enhanced reptation-Metropolis (R-M) algorithm? for this purpose. This
algorithm had to be slightly modified for the simulations on the Manhattan
lattice. The modification made in this case was the omission of the kink-end
and end-kink moves since they are not possible for walks on the Manhattan
lattice. This however, does not affect the ergodicity (and hence the validity)
of the enhanced R-M algorithm because there are no self-trapping ISAW
configurations on the Manhattan lattice. We also used a simple static
Monte Carlo algorithm to simulate kinetic growth walks (KGWs) on the
Manbhattan lattice; details of the algorithm can, for example, be found in
ref. 10. The two algorithms mentioned above were used to generate the
relevant walks with the correct probability distribution. However, we also
needed to develop an algorithm to collect the statistics on the cluster num-
bers for a particular walk. This algorithm was based on the Hoshen-
Kopelman algorithm® which is used to collect statistics of percolation
clusters in a box. We now briefly illustrate how our algorithm works; we
will be using the ISAW configuration in Fig. 4 as an example.

Our cluster counting algorithm works by assigning a non-negative
label to each site of the walk. Each cluster is assigned its own positive label
so that interaction bonds whose ends (i.e., the sites of the walk) have the
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Fig. 4. An example of an ISAW configuration which has been labelled with our cluster
labelling algorithm.

same label are part of the same cluster. The algorithm begins by initialising
the labels on all the sites of the walk to 0. The algorithm then visits each
site of the walk in succession, beginning at one of the endpoints (in the case
of Fig. 4, the left-hand end labelled 1). At each site, a check is made for
(non-consecutive) nearest neighbour sites. If none are detected, then the
site is labelled with a 0; otherwise, the site is assigned a positive label. The
value of this label is chosen to be the smallest positive label of its
neighbouring sites—including the site immediately preceding the current
site. Thus there are three possibilities: (i) all of the neighbouring labels are 0;
(ii) all of the positive neighbouring labels are the same; and (iii) some of
the positive neighbouring labels differ. If case (i) occurs, then a new label
is assigned to the site. In Fig. 4, this occurs with the site labelled 2 since the
preceding site is labelled 0, and the two nearest neighbour sites were as yet
unvisited and also labelled 0. In case (ii), there is no conflict between the
labels so that the new site assumes the label of the other positive labels. In
case (iii) the label of the new site is chosen to be the smallest of the positive
neighbouring labels. However, there is a conflict between the other labels
(i.e., the corresponding sites are part of the same cluster but have different
labels) which has to be resolved. To do this, we need an array of labels
which will allow us to check the “status” of any given label. A label can be
in one of two states: valid, or invalid. So for case (iii), let the value of the
smallest positive neighbouring label be /. Then for each positive neighbour-
ing label different to /, we change its entry in the array of labels to —/, where
the negative sign indicates that this label is invalid and hence redundant.
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Table 1. Example of Evolution of the Label List Used in the Droplet Cluster
Labeling Algorithm® as Applied to the Example Walk in Fig. 4°

Label List \ Time Step | 3 4 1M 16 17 18 21 33 38 42
1 1 1 I 1 1 | | 1 1 1 i
2 2 -t -1 -1 -1 -1 -1 -1 -1 -1
3 3 3 3 -1 -1 -1 =1 -1
4 4 -3 -3 -3 -3 -3 -3
5 5 5 5 5
6 6 -5 -5
7 7

“See text for details.

% The left column is the list of labels used to label the sites of the walk and the top row shows
the time steps (or walk site index) at which the label list changes. The body of the table
shows the contents of the label list.

Thus whenever a label is looked up in the array of labels with entry —/,
the algorithm will know that it is invalid, and that the valid label corre-
sponding to the associated site should actually be / (in this case, the algo-
rithm also checks the validity of the label /; if it is also invalid, then this
process is repeated until a valid label is found). Going back to Fig. 4, we
see that a label conflict occurs at the site immediately following the site
labelled 4. Here the label of the preceding site is 4, whereas the nearest
neighbour site is labelled 3. Thus the label of the new site becomes 3, and
the fourth entry of the array of labels is changed to —3.

When the algorithm finishes traversing the walk, it scans the walk
again but this time the correct label for each site is known. The algorithm
can then tally up the number of interaction bonds belonging to each cluster
in a separate array. In Fig. 4, there are three clusters even though seven
labels were used. The first cluster is labelled 1 and contains seven interac-
tion bonds, the second clyster is labelled 5 and contains ten interaction
bonds and the last cluster is labelled 7 and contains 2 interaction bonds.
The evolution of the label list used in the droplet labelling, as described
above, of the example walk in Fig. 4 is given in Table 1.

4. RESULTS

In this section we present the results of the simulations that were
performed. We firstly discuss how to interpret the results of the cluster
numbers and their preliminary processing. We then examine the specific
results for the Manhattan lattice, followed by the results for the simple
cubic lattice. All of the simulations presented in this paper were carried out
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Fig. 5. The same plot as in Fig. 2, but with the largest cluster for each configuration
removed from the sample. Note the change in scale on the horizontal axis.

on an 80 node Paragon Intel supercomputer and took roughly 3 months of
CPU time to complete. Note, all statistical errors represent 95 % confidence
intervals, with systematic errors added to the statistical errors.

Figure 2 shows the cluster numbers on the simple cubic lattice for a
low temperature (w = 1.405 > w, ), where the typical ISAW configuration is
dense. The function has a noticeable “bump” for large s: this is a manifesta-
tion of the precursor of the infinite cluster in a finite size system. In ordinary
percolation, the bump is usually removed by not including clusters that
span the simulation boundaries. In our case, the surface structure of the
walk complicates the corresponding operation. We therefore chose the
simpler process of not counting the largest cluster in each configuration
when compiling the cluster numbers for use in our analysis. We expect this
process to be asymptotically equivalent to removing spanning clusters as
N — o for w > w,. This has the effect of removing the bump as well as part
of the tail, as can be seen in Fig. S.

4.1. Simulations on the Manhattan Lattice

We decided to investigate the question of the coincidence of w, and w,
by performing simulations on the two-dimensional Manhattan lattice. The
advantages of simulating on this lattice are twofold. Firstly, the ¢ point is
known exactly: w,,=ﬁ.‘8'°‘ Secondly, at w, there exists a very fast and
efficient algorithm'® '7- %19 that allows the simulation of very long walks.
Thus we can perform simulations at w = w, to determine the behaviour of
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the “typical” cluster size, s accurately. The significance of this is that if s
is finite, then this implies that w, > w,,.

We used the kinetic growth algorithm!'% 171819 1o generate 6.3 x 10°
independent walks of length N =102400 and 1 x 10® independent walks of
length N =76800. We also used an exponential spacing to sample walks of
shorter length as suggested by Prellberg and Owczarek.'"” They found that
this method virtually eliminated the correlations in the data between dif-
ferent walk lengths.

Before we proceed any further, we note a peculiarity in the cluster
numbers for walks on the Manhattan lattice. From our definition, the only
way a cluster can contain an odd number of bonds on the Manhattan
lattice is if an endpoint of the walk is part of that cluster. This end effect
was removed by neglecting all odd numbered clusters in our analysis.

We used (15) to obtain an estimate of s, for the infinite walk, There
is a subtlety here, in that (15) is only valid for n, of infinite walks. Thus we
had to estimate this function by extrapolating the finite walk », values to
N = c0. We performed this extrapolation for 40 different s values, assuming
a 1/N correction term. A fit was then performed to the resulting function
using (15) as the fitting function; this is shown in Fig. 6. A y? test revealed
that (15) was an excellent fitting function for the data. Our estimate for s,
is

§¢=2300 £+ 200 (16)

thus confirming that w, > w,.

FETEYYTT
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000

n
w4
w»

7
s
Fig. 6. A fit of (15) to the cluster numbers, n, for infinite walks on a log-log scale, for the

Manhattan lattice. Each data point on this graph was extrapolated from the finite walk
nfw, N) data for w=w,.
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The next step was to obtain an estimate of the percolation point, w,.
We did this by extrapolating the maxima of the various moments of the
cluster numbers; this also allowed us to estimate ¢,. We used the enhanced
R-M algorithm combined with multiple Markov chains''®’ to estimate the
second, third and fourth moments of the cluster numbers as a function
of w. These simulations were carried out for 800 < N < 3200. In all cases we
estimated the autocorrelation times of the relevant observables using the
procedure described in Appendix C of ref. 20. This allowed us to estimate
how many independent samples of walks were generated by our runs. For
N=3200, | x 10° independent samples were generated at w =146 (the
exact number of independent configurations generated varied for each tem-
perature since lower temperatures had larger autocorrelation times). We
also performed simulations for smaller values of N but we found that they
were significantly affected by corrections to scaling and hence omitted.

Figure 7 shows our extrapolation of w, from the maxima of the
second, third and fourth moments of the cluster numbers. The inset of
Fig. 7, shows a typical curve of the third moment of the cluster numbers.
The fact that the maxima of the second and third moments approaches w,
from below whereas the maximum of the fourth moment approaches w,
from above facilitates a precise estimation of w,. Our estimates for w, and

, are

w, = 1.461 +0.003 (17)

1.48

1.44 —

0 10 20 30 40 50x10™

Fig. 7. This plot illustrates our extrapolation procedure used to obtain w), for the Manhattan
lattice. The curves from the bottom to the top correspond to the maxima of the second, third
and fourth moments of the cluster numbers respectively. The inset is the curve of the third
moment of the cluster numbers for N = 2400.
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and
$,=04510.1 (18)

The central estimate of w, was fairly insensitive to the value of ¢, (e.g,
using ¢,=0.55 and the third and fourth moments gives w, = 1.462, whilst
using ¢, =0.35 gives w, = 1.463). The error estimates are confidence inter-
vals based on the systematic variation due to ¢, and the least squares fits.
Note that w, is quite distinct from the ¢ point, w,= \/Ez 1.414.

We then estimated 7 from the divergence of the moments at w=w,.
We performed a number of simulations at w = 1.461 for 800 < N < 6400.
For N =6400, we generated | x 10° independent samples. The inset of
Fig. 8 is a log-log plot of the second moment of the cluster numbers as a
function of N. The slope of this curve for the k-th moment should be
(k+ 1 —1). However there is significant curvature in the data. Thus we
calculated local slopes for a range of different N values of the original plot.
These local estimates of 7, which we denote 7., were then extrapolated as
shown in Fig. 8. We used our estimate of ¢, as the correction-to-scaling
exponent in the extrapolation. We also tried a number of other similar
techniques; the variation in the estimates of ¢ was a rough indication of the
systematic error. Our estimate for 7 based on the above analysis is

1=225+0.15 (19)

2.6 T

2.4+

Tett

7.0 7fn(ﬁ]g 8.5

2.2 -

2.0

1.8 -

0 10 20 30 40 50x10°
1/N0,45

Fig. 8. A plot of the 7., for the Manhattan lattice. The inset shows a plot of the log of the
second moment of the cluster numbers against log(N) from which the values of 7 were
calculated.
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The large uncertainty is due to the large systematic error in the data rather
than the statistical error of our simulations.

Finally, we checked the assumption made in Section 2.2 that led to
¢, =0. We did this by assuming that the moments at w, diverged as

My(w,, Ny~ N +1=98/0  as N o (20)

which can be deduced by using a weaker assumption than that which lead
to (11). We then eliminated the ¢,/o factor from the exponent of (20) by
taking the ratio of the slopes of the log-log plots of two different moments.
This allowed us to make an estimate of 7 unbiased by the stronger scaling
assumption. We used this value of 7 to obtain an independent estimate of
¢,/0. Our estimate for ¢,/ is 0.995 + 0.01 which is in clear agreement with
#, and o being equal.

4.2. Simulations on the Simpie Cubic Lattice

We performed a large number of simulations on the simple cubic lattice.
Our first objective was to estimate the percolation point, w,, together with
the crossover exponent, ¢,. As in the Manhattan analysis we extrapolated
the locations of the maxima of the various moments of the cluster numbers
(with the largest cluster taken out). We again used the enhanced R-M
algorithm combined with multiple Markov chains to estimate the second,
third and fourth moments of the cluster numbers as a function of w.
These simulations were carried out for 800 < N <3200 since smaller values
of N were significantly affected by corrections to scaling. For N = 3200 we
generated 1 x 10° independent samples at w = 1.35 (the exact number of
samples generated depended on the temperature since lower temperatures
had larger autocorrelation times).

We found that the maxima of all the moment curves were shifting
from right to left, towards both the percolation and 8 points. Our estimate
for w, is

w,=132510012 (21)

This is slightly above the 8 point, w,. (Current estimates of w, are
1.308 + 0.001V and 1.318 4+ 0.008.* The percolation crossover exponent
was also estimated from the above data:

$,=0.5540.15 (22)

For this estimate of ¢,, the locations of the maxima of the moments
extrapolated to roughly the same value of w,. The central estimate of (22)
produced the least scatter for w,,.
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The exponent t was then estimated from the divergence of the
moments at w =, by using (13). Thus we performed a number of simula-
tions at w=1.325 for 800 <N < 5600. We generated 1 x 10° independent
samples for N =5600. We then performed a similar analysis to that on the
Manhattan lattice which resulted in the estimate

1=23+401 (23)

where the error bar is a combination of the statistical and systematic
errors.

5. CONCLUSIONS

We have given evidence that there exists a Polymer-Interaction Per-
colation transition in the ISAW model in two and three dimensions.
Evidence suggests that this transition takes place at a temperature lower
than the 6 point. We have estimated the values of the exponents 7 and ¢
on the Manhattan and simple cubic lattices, as well as the position of the
PIP transitions.
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